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Abstract

An implementation of the Model Based Parameter Estimation (MBPE) technique is

presented for obtaining the frequency response of the Radar Cross Section (RCS) of arbitrarily

shaped, three-dimensional perfect electric conductor (PEC) bodies. An Electric Field Integral

Equation (EFIE) is solved using the Method of Moments (MoM) to compute the RCS. The

electric current is expanded in a rational function and the coefficients of the rational function are

obtained using the frequency derivatives of the EFIE. Using the rational function, the electric

current on the PEC body is obtained over a frequency band. Using the electric current at different

frequencies, RCS of the PEC body is obtained over a wide frequency band. Numerical results for

a square plate, a cube, and a sphere are presented over a bandwidth. Good agreement between

MBPE and the exact solution over the bandwidth is observed.
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1. Introduction

The Method of Moments (MoM) using the Electric Field Integral Equation (EFIE) has

been a very useful tool for accurately predicting the Radar Cross Section (RCS) of arbitrarily

shaped three dimensional PEC objects [1]. To obtain the frequency response of RCS using MoM,

one has to repeat the calculations over the frequency band of interest. If RCS is highly frequency

dependent, one needs to do the calculations at fine increments to get an accurate representation of

the frequency response. For electrically large objects, this can be computationally intensive

despite the increased power of the present generation of computers. Previously, Asymptotic

Waveform Evaluation (AWE) technique was applied to frequency domain electromagnetics

[2,3,4]. In AWE, the unknown current is expanded in a Taylor series around a frequency. The

coefficients of the Taylor series were evaluated using the frequency derivatives of EFIE. From the

Taylor series, the electric current distribution on PEC body was obtained and used to calculate the

RCS.

In this report, a similar but more flexible method called Model Based Parameter

Estimation (MBPE) [5,6] is applied for predicting RCS of the three dimensional PEC objects over

a wide band of frequencies using Method of Moments. In MBPE technique, the electric current is

expanded as a rational function. The coefficients of the rational function are obtained using the

frequency data and the frequency derivative data. Once the coefficients of the rational function are

obtained the electric current distribution on the PEC body can be obtained at any frequency within

the frequency range. Using the current distribution, the RCS is obtained. If the frequency

derivative information is known for more than one frequency, a rational function matching all the

samples can be obtained resulting in a wider frequency response.
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The rest of the report is organized as follows. In section 2, MBPE implementation for

EFIE is described. Numerical results for a square plate, a cube and a sphere are presented in

section 3. The numerical data are compared with exact solution over the bandwidth. CPU time

and storage requirements are given for each example. Concluding remarks on the advantages and

disadvantages of MBPE are given in section 4.

2. MBPE Implementation for MoM

Consider an arbitrarily shaped PEC body shown in Figure 1. For RCS calculations, a plane

wave is assumed to be incident at an angle . At the surface of the PEC body the total

tangential electric field is zero. The total tangential field in terms of the scattered and incident

fields on the PEC body is therefore written as

(1)

In a subdomains MoM approach, the PEC surface is divided into triangles, rectangles, or

quadrilaterals. In this paper we follow the triangular subdomain approach reported in [7]. Writing

 in terms of the equivalent electric current distribution  on the surface of the PEC object

and applying the Galerkin’s method, a set of simultaneous equations are generated and are written

in a matrix equation form as

(2)
where

(3)

θi φi,( )

Escat Einc+ 0=

Escat J

Z k( )I k( ) V k( )=

Z k( )
jkηo

4π
----------- T J∫∫• jkR–( )exp

R
--------------------------- s'd sd∫∫=

jηo

4πk
---------– T∇•( ) ∇′ J•( ) jkR–( )exp

R
--------------------------- s'd sd∫∫∫∫
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and

(4)

 is the vector testing function,k is the wavenumber at frequencyf, and  is the intrinsic wave

impedance.R is the distance between the source point and the observation point.  indicates the

del operation over the source coordinates and similarly  indicates the surface integration over

the source coordinates. In equation (2),Z(k) is a complex and dense matrix.V(k) is the excitation

column vector. Equation (4) is calculated using a harmonic plane wave

(5)

where

(6)

and

(7)

(8)

(9)

(10)

(11)

(12)

 represents the polarization angle of the incident field. When , the incident field

V k( ) T E inc• sd∫∫=

T ηo

∇′

ds′

Einc Ei j kxx kyy kzz+ +( )[ ]exp=

Ei xExi yEyi zEzi+ +=

Exi θi φi αcoscoscos φi αsinsin–=

Eyi θi φi αcossincos φicos αsin+=

Ezi θi αcossin–=

kx k θi φicossin=

ky k θi φisinsin=

kz k θicos=

α α 0=
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corresponds to H-Polarization and when , then the incident field corresponds to

E-Polarization. The matrix equation (2) is solved at any specific frequencyfo (with wavenumber

ko) either by a direct method or an iterative method. The solution of equation (2) gives the

unknown current distribution, which is used to obtain the scattered electric field. The radar cross

section is given by

(13)

The RCS given in equation (13) is calculated at one frequency. If one needs RCS over a

frequency range, this calculation is to be repeated at different frequency values. Instead MBPE

can be applied for rapid calculation of RCS over a frequency range. MBPE technique involves

expanding the unknown coefficient vector as a rational function. The coefficients of the rational

function are obtained by matching the function and its frequency derivatives of the function at one

or more frequency points.

The solution of equation (2) at any frequencyfo gives the unknown current coefficient

column vectorI(ko), where ko is the free space wavenumber atfo. Instead I(k) can be written as a

rational function,

(14)

where

α π 2⁄=

σ 4πr
2

r ∞→
lim

E fscat r( ) 2

Einc r( ) 2
---------------------------=

I k( )
PL k( )
QM k( )
----------------=

PL k( ) ao a1k a2k
2

a3k
3

.................. aLk
L

+ + + + +=

QL k( ) bo b1k b2k
2

b3k
3

.................. bMk
M

+ + + + +=
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bo is set to 1 as the rational function can be divided by an arbitrary constant. The coefficients of

the rational function are obtained by matching the frequency derivatives ofI(k). If equation (14) is

differentiatedt times with respect tok, the resulting equations can be written as[6]

.

.

.

where  is the binomial coefficient. The system of(t+1) equations provides the

information from which the rational function coefficients can be found if . If the

frequency derivatives are available at only one frequency , the variable in the rational function

can be replaced with  i.e.,

(15)

and the derivatives can be evaluated at . The coefficients of the rational function can be

obtained from the following equations:

(16)

IQM PL=

I ′QM IQM ′+ PL′=

I ′′QM 2I ′QM ′ IQM ′′+ + PL′′=
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=
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----------------------=
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f o
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(17)

where . For example for a rational function withL=5 andM=4, the matrix equation

can be written as

(18)

This approach is same as the Pad  approximation given in [8]. This method has been

successfully applied to electromagnetic scattering from cavity-backed apertures using a hybrid

finite element and method of moments technique[9].

If the frequency derivatives are known at more than one frequency, then the expansion about

k=ko cannot be used and the system matrix to solve the rational function coefficients takes a

general form. For the sake of simplicity, only a two frequency model is presented here. Assume

that at two frequencies,f1 (with free space wavenumberk1) andf2 (with free space wavenumber

1 ..... I o– 0 ..... 0
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k2), four derivatives are evaluated at each frequency. Hence 10 samples of data are available        (2

frequency samples and a total of 8 frequency derivative samples) to form a rational function with

L=5 andM=4

(19)

Equation (19) can be written as

(20)

Differentiating equation (20) four times at each frequency, the matrix equation for the solution of

the coefficients of the rational function (equation (19)) can be written as

(21)
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In the above equations, , thetth derivative can be obtained using the recursive relationship,

(22)

 is theqth derivative ofZ(k) with respect tok. Similarly  is thetth derivative if

V(k) with respect tok.  is the binomial coefficient.

The above procedure can be generalized for multiple frequencies with frequency

derivatives evaluated at each frequency to increase the accuracy of the rational function.

Alternatively, the two-frequency-four-derivative model can be used with multiple frequency

windows. As the complexity of the matrix equation to solve for multiple-frequency-multiple

derivative model increase with number of frequency points and number of derivatives taken at

each frequency, the two-frequency-four-derivative model is followed in this report.

3. Numerical Results

To validate the analysis presented in the previous sections, a few numerical examples are

considered. RCS frequency response calculations are done for a square plate, a cube, and a

sphere. The numerical data obtained using MBPE are compared with the results calculated at each

frequency using the triangular patch Method of Moments. We will refer to the latter method as

“exact solution.” All the computations reported below are done on a SGI Indigo 2 (with IP 22

processor) computer.

(a) Square Plate:

The first example is a square plate ( ) with the incident electric field at

I
t( )

I
t( )

k( ) Z
1–

k( ) V
t( )

Ct q,
q 0=

t

∑ Z
q( )

k( )I t q–( )
k( )–=

Z
q( )

k( ) V
t( )

k( )

Ct q,

1cm 1cm×
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 and . The incident field is E-polarized ( ). The square plate is

discretized with 603 unknowns. The frequency response is calculated with one-frequency MBPE

(L=5, and M=4) at 30GHz and using nine frequency derivatives at that frequency. The frequency

response is also calculated with a two-frequency MBPE (L=5, M=4) at f1=25GHz andf2=35GHz

and using four frequency derivatives at each frequency. The frequency responses obtained are

plotted in figure 2 along with the exact solution calculated at each frequency over the frequency

range 15GHz to 45GHz. The one-frequency MBPE took 1688 secs to generate the moments,

whereas two-frequency MBPE took a total of 3060 secs to generate moments at both frequencies.

The exact solution took 22,258 secs to calculate 31 frequency values from 15GHz to 45GHz. It

can be seen that both one-frequency MBPE and two-frequency MBPE give accurate results over

the frequency range 15GHz to 45GHz. One-frequency MBPE seems to compute the results much

faster than the exact solution and two-frequency MBPE.

(b) Cube:

RCS frequency response of a PEC cube (1cmX1cmX1cm) is computed for normal

incidence. One-frequency MBPE with L=5 and M=4 at fo=15GHz is used to calculate the

frequency response. Frequency response is also calculated using the two-frequency MBPE with

L=5 and M=4 at f1=11GHz andf2=19GHz. The frequency responses obtained are plotted in

Figure 3 along with the exact solution calculated at each frequency over the frequency range

2GHz to 22GHz. The one-frequency MBPE took 1143 secs of CPU time to generate the

moments, whereas the two-frequency MBPE took a total of 2066 secs to generate the moments at

both frequencies. The exact solution took 10,500 secs to calculate RCS at 21 frequency values

from 2GHz to 22GHz. It can be seen from Figure 3 that the one-frequency MBPE gives accurate

θi 90
o

= φi 0
o

= α 90
o

=
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solution over the frequency range 2GHz to 22GHz, whereas the two-frequency MBPE gives

accurate solution over the frequency range 5GHz to 20GHz. It can also be seen that one-frequency

MBPE is faster than the two-frequency MBPE and exact solution.

(c) Sphere

As a third example, a PEC sphere of radius 0.318cm is considered. The sphere is

discretized into 248 triangular elements. One frequency MBPE withL=5 andM=4 at fo=20GHz

is used to calculate the frequency response. Two-frequency MBPE withL=5 and M=4 is at

f1=15GHz andf2=25GHz is also used to calculate the frequency response. The frequency

response over the frequency range is plotted in Figure 4 along with the exact solution calculated

with 1GHz frequency interval over the bandwidth. The one-frequency MBPE took 580 secs to

generate the moments, whereas two-frequency MBPE took a total of 1040 secs to generate the

moments at both frequencies. The exact solution took 7905 secs to calculate RCS at 31 frequency

values from 5GHZ to 35GHz. It can be seen from Figure 4 that the one-frequency MBPE and

two-frequency MBPE gives accurate solution over the frequency

Comment on Storage: In all the above examples, when solving a matrix equation, one needs to

store a complex, dense matrix  of size  for exact solution at each frequency. In one-

frequency MBPE one needs to store (L+M) complex dense matrices ( ,

q=1,2,3,...(L+M)) of size , along with the matrix  of size . For electrically

large problems, this could impose a burden on computer resources. This problem can be

overcome by storing the derivative matrices,  out-of-core, as the derivative matrices are

Z ko( ) N N×

Z
q( )

ko( )

N N× Z ko( ) N N×

Z
q( )

ko( )



18

required only for matrix-vector multiplication. In two-frequency MBPE, one needs to store only

 derivative matrices of size  along with the matrix  of size  at

each frequency. Once the moments are calculated at one frequency, the memory used for the

matrices can be reutilized to generate moments at the second frequency, hence reducing the

burden on computer memory requirements. In all the numerical examples presented with L=5 and

M=4, one-frequency MBPE had to store 10 matrices of size , whereas two-frequency

MBPE had to store only 5 matrices of size  at each frequency. The memory to store the

matrices at one frequency is reutilized to store the matrices at the second frequency. Hence, even

though the CPU timings for two-frequency MBPE is more than the one-frequency MBPE, but if

computer memory is a constraint, however, it is advisable to use two-frequency MBPE as an

alternative to one-frequency MBPE.

4. Concluding Remarks

An implementation of MBPE for frequency domain Method of Moments is presented. The

RCS frequency response for different PEC objects such as a square plate, cube, and sphere are

computed and compared with the exact solution. From the numerical examples presented in this

report, MBPE is found to be superior in terms of the CPU time to obtain a frequency response. It

may also be noted that although calculations are done at one incidence angle for all the examples

presented, with a nominal cost, the frequency response at multiple incidence angles can also be

calculated. It is also observed from the numerical examples that the one-frequency MBPE is

superior to two-frequency MBPE in terms of the CPU timings, whereas two-frequency MBPE is

superior in terms of the computer memory requirements. As MBPE results in a rational function

L M 1–+
2

------------------------ 
  N N× Z k( ) N N×

N N×

N N×



19

one can extract the poles and zeros of this function and can construct the time response, which is

useful in microwave imaging applications.

In one-frequency MBPE the frequency response is valid over a certain frequency range. In

two-frequency MBPE, the two frequency values have to be chosen so as to get an accurate

frequency response between the two frequency values. To get a wide frequency response for any

problem, either one- or two-frequency MBPE models have to be used with different frequency

values to cover the complete frequency range. To be accurate over all frequency ranges a reliable

error criteria should be developed, which can be used to sample the frequency points to apply

MBPE model. Development of such a sampling criteria will make MBPE a very effective tool for

computational electromagnetics.
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Figure 1 Arbitrarily shaped three dimensional PEC object
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Figure 2 RCS frequency response of a square plate(1cmX1cm)
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Figure 3 RCS frequency response of a PEC cube (1cmX1cmX1cm)
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Figure 4 RCS frequency response of a PEC sphere (radius=0.318cm)
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